
Team Satellite Fire Patrol

Software Testing Plan v1.1
January 26, 2024

Team Members:
Aaron Santiago, Ricardo Chairez and Zachary Hallemeyer

Clients:
Benjamin Wiebe, Dr. Camille Gaillard, and Dr. Christopher Doughty

Mentor:
Saisri Muttineni



TABLE OF CONTENTS

Introduction 2
Unit Testing 3
Integration Testing 4
Usability Testing 5
Conclusion 7

1



INTRODUCTION

The Hawaiian Islands hold immense ecological and cultural value but are currently
threatened by increasing hot and dry conditions caused by climate change. This threat
was evident in August 2023, when multiple wildfires across Maui resulted in at least 106
deaths, billions of dollars in damages, and ecological destruction. These fires begin in
grasslands, which are vulnerable to high temperatures due to increasing drought and
low moisture. Other Hawaiian ecosystems, such as coral reefs and tropical forest
canopies, are also threatened by rising temperatures resulting from climate change.

Team Satellite Fire Patrol is partnering with clients Dr. Christopher Doughty, Dr. Camille
Gaillard, and PhD student Benjamin Wiebe to create a GUI web application that uses
real-time satellite thermal data to identify warning signs in the Hawaiian Islands and
send alerts to the proper authorities. The app will automatically aggregate and process
satellite thermal data from multiple sources, compare historical averages to highlight
temperature anomalies, and present the data in a user-friendly interface for a range of
resource management applications.

With these motivations in mind, extensive software testing is required. Software testing
has the goal of ensuring our applications and components are working according to our
expectations. As the web application increases in complexity and scale, it is incredibly
important that testing be incorporated to validate the application as well as prevent bugs
as more features are added or modified.

In light of this, this document will detail how the application and components are being
tested, both manually and automatically. Some tools that are actively used in this project
include Pytest for Python code and Chrome’s DevTools to analyze our Vue application.
The general plan for testing this web application and components will vary from
component to component as they function and are made differently. Testing for our data
handling component will consist of validating data from NASA Ecostress, ensuring
dynamic error handling in data retrieval and processing. In regard to displaying the data,
our vue web application will need to retrieve the data from our data storage component
(NAU Monsoon) and display it in a timely manner. This will need to be accomplished
with the use of a backend on our AWS server. In order to test this component, we will
need to ensure that the backend and frontend will be able to dynamically handle errors
in the case of network interruptions or miscommunications between Monsoon and AWS.
The testing for the previously mentioned component will be elaborated and explored in
this document.

2



UNIT TESTING

Unit testing is a vital component when building a software application. These tests
ensure that all software components from the smallest functions to the biggest functions
work as intended. More specifically, unit testing is the practice of confirming if a given
function returns the expected result.

1.0 Monsoon

The software written to handle retrieving, processing, storing, and publishing the
satellite data is written in Python and hosted in NAU’s Monsoon. NAU Monsoon allows
for fast computation provided with its vast components of hardware as well as a surplus
of storage with the availability to be scaled up if needed. Python also allows for fast data
manipulation with libraries such as NumPy and pandas. Because the code for Monsoon
is written in Python, Pytest will be used for unit tests. This is because of the low base
amount of code required to test each function. Pytest is also widely used in industry.

The code for retrieving data from external sources has the unfortunate nature of
preventing 100% test coverage, as there may be unforeseen changes in API’s.
Therefore, testing for API’s must rely on checking for correct status codes and
confirming that data is being received. Furthermore, the code must be able to handle
errors brought on through network interruptions and continue with computing without
exiting execution. This means that the code retrieving data must be dynamic in nature to
adjust to unforeseen changes.

In terms of data processing, a large part of validating incoming satellite images is
ensuring that the data is from a coordinate on the Hawaii islands. This is accomplished
with global_land_mask, which ensures that a given coordinate is a land coordinate
rather than an ocean coordinate. Furthermore, the code validates coordinates by
ensuring that they are within a bounding box containing Hawaii. Along with this, testing
is performed with Pytest to ensure that a given satellite h5 file is converted to a geojson
file, with land surface temperature being successfully converted to Fahrenheit or
Celsius.

Cloud masking, removing clouds from satellite images, is also an important part of
validating the temperature data that the site displays. In order to accomplish this, a
cloud mask is also received from NASA ecostress and used to remove clouds.
In regard to data storage, the system is dynamic, so that the place in which data is
stored can be easily changed and modified by simply changing data destination paths.

3



Finally, the processing data scripts run automatically on Monsoon on a time interval
(base: 24 hours). Testing if the scripts are correctly scheduled is quite simple, as the
scripts will be marked as a queued job.

1.1 Data Retrieval
● Tests for correct status codes from NASA Ecostress to confirm correct operations
● Ensure dynamic handling of errors for network interruptions
● Implement tests to confirm API response form

1.2 Data Processing
● Validate satellite image data with the use of global_land_mask as well as a

limited bounding box of Hawaii
● Tests to confirm the temperature conversion from scaled Kelvin to Fahrenheit

and Celsius
● Validate satellite temperature data with the use of cloud masking

1.1 Data Storage
● Validate that data retrieval and processing are correctly scheduled with the use of

NAU Monsoon’s job scheduler
● Test data storage is dynamic by changing data destination and processed data

destination paths

2.0 AWS
Luckily for AWS there is only one section that needs to be tested. Inside the
thermalwatch->scraper folder there is a scraper.js file which contains a web scraper that
pulls data from the published monsoon website. To test the file, you simply run the file,
and it will let you know directly from the terminal what is occurring and which files are
being grabbed from the website.

For proper unit testing, we used the framework JEST, which is a JavaScript testing
framework. This framework tests inputs and expected outputs, which came back looking
optimal for the purposes of this project. JEST uses selenium and is widely used in large
projects to test for user input which does not necessarily apply here.

INTEGRATION TESTING

Integration testing is to ensure that the different components of a software application
work effectively together. For instance, in this project there is an AWS server that hosts
a Vue application as well as a backend for said Vue application, and there is also the
NAU Monsoon component that handles data processing. These components need to be
connected together, and they need to be effectively tested to ensure that the connection
can withstand error without crashing either component.

4



1.0 Monsoon and AWS

The data processing scripts publish the processed data to a constant URL. Therefore,
the backend of AWS is able to retrieve the files at that constant URL. More specifically,
a directory of available files is constantly updated by the scripts on Monsoon, which
allows the backend to receive a dynamic and accurate list of all the data available for
use. Therefore, the AWS backend serves as a bridge for the Vue application to use the
data on Monsoon.

In order to ensure that errors are properly handled in the event of a requested file not
existing or another unseen event. The backend will raise an error and continue with its
execution. Similarly, due to the nature of Vue and JavaScript, the Vue application will
not crash when a file is requested and not received. Rather, it will revert to a stable
state.

2.0 AWS and Vue

Integrating Vue with AWS is an easy task with the built-in tools Vue has. Vue is node-based, so
it runs using simple commands such as “npm run build” to build the application, which will not
compile if there are any issues present. Then, once we resolve all the issues, we can run the
command “npm run serve,” which serves the prebuilt application to the specified URL.

Using these methods, we will constantly test the application while adding features to it and
ensure it works as expected. AWS is running Ubuntu, so everything is easy to navigate and test,
which is why we will be constantly testing as we implement new features.

With the Vue framework, it also allows us to build the application to different specifications. We
are currently building it normally, but once we have a finished product, we can build it for
production, which is faster because Vue automatically optimizes our code and processes to run
in a commercial environment.

USABILITY TESTING

Usability testing is focused on user interaction with our product. Our goals for this
section are to ensure the user has the best experience possible using our product and
to remove any bugs or unexpected behaviors. We will be mainly focusing on the
website since the users will only have access to it, and we want to make it as easy to
understand as possible. For our usability testing, clients and other students outside of
our degree program will be testing out the website to provide helpful feedback on its
usability. The clients will provide the most useful feedback since this product is being
built for their needs. The students outside of our program will provide feedback for the

5



general public, which is also something that needs to be included because the clients
want to release this project to the public.

1.0 Monsoon
Monsoon itself will not be interacted with by the user, so we did not do any usability
tests for it. Luckily our clients are well versed with monsoon and will feel comfortable
using it for this project’s purpose. All documentation and help related to monsoon as
itself is not managed by us, so it is subject to change without notice.

2.0 AWS
Our website is hosted on AWS at thermalwatch.org. The website is fairly user-friendly,
with more updates being applied. To check for user experience testing, we try to
simulate what a normal user would do and reduce errors during development by using
the inspect tool directly on the website. We will continue to present the website to the
clients who can then recommend changes based on usability. Below is an example of
what the inspect tool appears as with an error.

Figure 1: Inspect Element Tool

6



CONCLUSION

Overall, we are testing every part of this project individually and together to ensure all parts
work as expected. Our project consists of two parts which are Monsoon and AWS, which we will
continue unit testing as our project progresses to validate code behavior in both environments.
Integration between the two environments is crucial for our project to work and is tested using
fake files and real files to simulate a real working environment. Last but not least, our user
experience is the most important part of this project because our final product is a website,
which will also be the only part that is interacted with. We will test the user functionality
ourselves by testing our features as soon as they are available and using the inspect tool on the
website consistently.

7


